
1. Introduction

While MVC has a fundamental relevance in App design, it does not address the
complexities of modern UIs. It has not addressed the complexities of managing the
complete system and that system is now required to interact with both online and on device
services, handle navigational view stacks, employ the myriad of modern graphic controls, all
the while provisioning for testability, organizing dependencies and supporting incremental
development.

The BSP design model works on a fundamentally wider scope and scale than MVC. It does
this by addressing the whole system, while respecting the fundamental principles of MVC.
BSP is the product of the “Design for interaction” software design methodology and that
technology recognizes Behaviour as a set of interactions. These interactions are idealized
as a fabric of Actors connected though notifications pathways (called Notifiers, that emit
from source to target Actors). The propagation of notifications through the Actor-Notifier-
Fabric defines the Interactional Topology, which in turn models the software system
behaviour.

BSP recognizes that behaviour must be decomposed into a managed set of simpler sub-
behaviours. Just as nature exhibits complex process through the interplay of a bounded set
of simple processes, behaviour decomposition seeks to express complex behaviour as the
interaction of simpler behaviours. It does this by first grading behaviour into levels and then
recognizing the simpler sub-behaviours as pattern types.

These behaviour levels are normally categorized as: “Macro”, “Mid” and “Micro”
behaviour, Each of the levels have differing characteristics and requirements and so BSP
assigns an appropriate design-model-architecture to each level.

Macro behaviour tends to deal with more wide ranging, abstract concepts, while effectively
orchestrating and coordinating underlying interactions and workflow, On the other end of the
scale, Micro behaviour being closer to the hosting OS, tends to operate with concrete OS
constructs and terms and bears the weight of the actual direct “doing”, i.e. directly invoking
OS and UI services.

In terms of design-model-architectures, the Macro level representation is normally assigned
to a design-architecture that supports abstract concepts and complex coordination and so in
our case, that is BSP. The Micro level is typically designed as traditional sub-systems, as
they are more suited to handling fine-detailed functional behaviour. Mid level is normally a
mix, depending on trade offs between the directness and efficiency of subsystems and the
systematization and consistency that interactional design brings to coordination.

The BSP model expresses Macro behaviour as three separate Actor models and employs
the concept of a Notifier to transport their notifications.
To first give a loose set of definitions:

• The Behaviour Actor Model: Models the application behaviour.

• The Service Actor Model: Models the thin interface to the hosting OS and
comms services.

• The Presentation Actor Model: Models the thin interface to the hosting UI
presentation system.

• The Notifier: Acts as the notification transport system between
actors.

Terry Stillone
January 2022

Originware.com

The BSP (Behaviour Service Presentation)
Software System Design Model

2. Formal Definitions of BSP

The Behaviour Actor Model is formally defined as: “The specialized behavioural logic that
defines the unique characteristics of the application software system”. This includes the
traditional “business logic” but also covers the application handles its responses to events
and interactions (i.e. interactions with the user, OS service events, etc).

The Service Actor Model is: “The pure interface logic that interacts with the host OS. More
specifically, the logic that instructs host OS services and handles host OS service events”.
The Service actor model consumes notifier requests (to perform something) and emits host
OS notifier events to the Behaviour actor model for event handling.

The Presentation Actor Model is: “The pure interface logic that interacts with the host UI
Presentation system. The logic that directs and draws the graphic elements of the
Presentation system and handles their associated events. It includes the traditional view
models from MVC but the controllers only handle UI interaction and do not persist any
behavioural state or imbue behavioural characteristics”. The presentation actor observes
directed requests (for it to present content) and also emits UI related events (in response to
graphic events, but represents the event as intent).

The Notifier Model is: The notification transport mechanism which lays-out out the
Interaction Topology. This is typically a simple synchronous push mechanism of a
notification, packaged with specialized data, directed from a source to target Actors.

Notifiers are responsible, for event routing. For example, Presentation Actor Model events,
such as graphic element events are routed to the Behaviour Actor Model which in turn,
triggers a cascade of notifications, with the ultimate emission of a Notifier-request to display
the result (and of course, that result notification is directed back to the Presentation Actor
Model to necessitate the presentation of the result).

Visually, the very basic BSP design looks like:

Service (Actor Model)
Behaviour (Actor Model)

Presentation (Actor Model)

Basic BSP (Behaviour, Service, Presentation) Interaction Diagram

Observe Notifiers

Emit Notifiers

Emit Notifiers

Observe Notifiers Request
Notifier

Observe Notifiers

Emit Notifiers

Event
Notifier

Request
Notifier

Event
Notifier

Service Event

Presentation Event

Presentation Request

Service Request
Presentation Request

Presentation Event

Service Request

Service Event

BSP shifts away from the traditional idealization of system behaviour as objects incorporating
object properties and method calls, to a system of:

Interactions between Actor Models

which condenses Macro behaviour to an abstract description of:

The Propagation of Notifications through the Actor Fabric.

As a general side comment on the dynamics of “Behaviour”, Behaviour in itself is not
preemptive, but is instead, reactionary, reacting to events from sources such as presentation
or service (e.g a facility authorization failure, a system timer, a UI button event). Behaviour
does drive action, but only as a back reaction to an event that was originally sourced
externally (i.e. not sourced internally with in the model).
BSP also supports more complex UI Navigational systems (sometimes called “UI Navigation
Stacks”). The Behaviour Model can accommodate a Behaviour Stack married to the presentation
navigation stack to provide more localised behaviour for each paired Navigation view (See Appendix
III for more details and examples).

3. Notifiers In More Detail

The input and output mechanisms of Actors are expressed as Notifiers. The model inputs
are assigned a Request Notifier variety and model outputs are assigned an Event Notifier
type.

As such, Notifiers channel activity through the application system. They are the go to place
to observe engagement, while the Actor is the place to observe how that engagement is
handled. The functional power of Notifiers can be amplified, by internally augmenting them
so that they can be traced, monitored and logged. The observed notifications can then be
used in support of debugging, testing, metrics and auditing.

When projected into code, Notifiers are typically a code object (a class to be passed around
or a struct). The act of a Notifier issuing a notification is implemented as a simple object
method call with the Notification being passed as a parameter. Thus, debugging in a BSP
model becomes one of following the notifier method call chain and observing their associated
notification parameters.

There may be cases where more complex input-output interactions are required than a simple
synchronous push system. For example the need for a asynchronous queued notification
pipeline may arise. These more complex transport mechanisms or channels can be
constructed within the source Actor, then deployed through synchronous Notifiers to the
target Actors, and subsequently exercised on demand.

4. Decomposing Behaviour With Scopes

BSP recognises cyclic behaviour patterns and refers to them “Scopes” (because many
of these exhibit a life-time-cycle pattern which can be organised into hierarchal scope
set). These “Scopes” have a lifecycle pattern of:

i) An initiation cycle.

ii) An operational cycle (where a number of scope associated operations may be performed).

iii) A final termination cycle (which also demarcates the end of all the scope operations).

Some common Scope examples include:

• The Application Cycle (initiate with the construction of resources, operate the application
terminate with resource destruction).

• The Security Cycle (initiate with obtaining authorization, operate secure services
terminate with the relinquishment of authorization).

• The Command Cycle (initiate with the receipt of a command, operate the command,
terminate with a result response).

• The Modal Presentation Cycle (initiate with the presentation of the modal,
operate modal interaction and terminate with the
removal of the modal and return of the result)

• The Login-Session-Logout Cycle (initiate with login, operate the session
terminate with logout).

• The Navigational Stack Cycle (initiate with presentation of the nav view set,
operate the view interaction,
terminate with removal of the view set).

Many of the examples sited above are actually reversible processes, so their termination is the
reverse of their initiation cycle. This is a common characteristic to take note of, when identifying
potential Scopes.

Scoping is implemented using a “Behaviour Stack”, housed in the Behaviour Actor, with each
stack element operating as an Actor in its own right, specializing in the target Scope behaviour.
The temporal window of the Scope on the stack marks the Scopes lifetime as well as the
boundaries of child Scopes that it initiates.

To illustrate the hierarchal nature of Scopes, here is an example outline of the scope hierarchy
for a generic net server based account App:

(Level 1) Hosting Environment Security Validation Scope
(Level 2) OS Hosting States Scope
(Level 3) Secure Server Connection Scope

(Level 4) Server Session Scope (with Login/Logout View)
(Level 5) Application Account Base View Scope
(Level 5) Application Account Transaction View Scope
(Level 5) Application Account Transfer View Scope

In
fra
st
ru
ct
ur
e

S
co
pe
s

A
pp
lic
at
io
n

S
co
pe
s

While Scoping is also useful for Mid-behaviour coordination, it may not cover all
behaviour situations and needs. For a more complete design system, please follow the
Reactive Fabric Technology link in section titled: “The Larger Design Picture”.

5. Idealizing Behaviour in the Abstract “Design Space”

BSP decouples Macro-behaviour from implementation by representing the design in an
abstract “Design Space” and so implementation now becomes a projection of the design
onto “Code Space”. This actually makes sense as Macro-behaviour deals in more
abstract concepts and coordinates more abstract processes.
Design Space is more visualisable, more immediately changeable and so the perfect
medium to prototype, to perform collaborative design, to share, to document and to
incrementally design. Thus Design Space as a medium, is engineered to promote
incremental design within a collaborative atmosphere.

Design Space also directly addresses the the cognitive load on developers through the use
of decomposition. Decomposition reduces the size and complexity that developers “need to
fit in their head”. Putting it in stark terms: “A diagram is much easier to fit into the head than a
thousand of lines of code”

6. Software Construction With BSP

Actors and Scopes provide a very “contour” rich set of aspects to the overall design
and these “contours” can be very useful in the planning and analysis space.

The concept of the “Aspect Contour” describes the collective boundary layers for a
particular aspect and these contours can be projected onto various spaces to give
insight into their own natural contours. In the BSP context, Scopes identify contours
with respect to the aspects of scope life-cycle, role and role-dependency. Actors
identify the contours with respect to interaction, such as notifier pathways, notification
types and notification content.

Each story or feature exercises a set of pathways that traverse a series of Scope and
Actor contours, some of those contours are perquisites and will need to be scheduled
for construction prior to the story/feature and some of the contours will be new and will
need to be included as work items for the story/feature.

Contour awareness can be a very useful tool in planning, in the determination of team
assignments, in the establishment of both temporal and behaviour dependencies, in
the sequencing of construction, in the formulation of work-sizing and much more. The
terms described by Contour Aspects can become part of the project terminology, to
describe the process-pathways and the more vague aspects of the design.

Please, also be mindful that Scopes do not rigidly imply that they need to be
developed in their hierarchy order (if there is no active dependency). Mock
replacement pass-through scopes can be used instead as placeholders until
implementation is required. So in our previous example, UI related scopes can be
constructed with hosting and environment security scopes implemented pass-throughs
and the Server Session scope can simply mocked (while being developed), so as not
block other parallel development with active session dependancies.

7. Testing Scenarios.

BSP testing procedure is typically a three step process:

1. Exercise target input notifiers with generated testing notifications.
2. Observe the notifications of the resultant output notifiers.
3. Match the observed notifications with expected results.

Notification observation can be implemented by placing auditing hooks within Notifiers to log
notifications to a centralized auditing store and then later be used to match against expected
results. These stored observations can be rendered as strings (together with their notifier
identification) and compared by sub-string matching.

Testing scenarios fall into:

• Testing individual models: B, S, P
• Testing model composites: B + S and B + P
• Whole system testing: BSP

For those unit tests that need to be driven by presentation events, you can either exercise the
graphic elements directly (using some available framework), or you can engage the graphic
element action by exercisng the associated Presentation Model Event Notifier.

7. Pros and Cons of BSP

(i). Benefits of BSP

BSP code tends to be more compact, more performant and definitive (i.e. the code
indicates the “what” of what is being done and less of the “how” it is being done). Models
tend to have much less state, in fact the actual state is encoded in the notifier call chain
so in a sense much of the implied state is moved to a functional implied state. Debugging
becomes more of an immediately accessible experience by following notifier call chains in
a debugger.

BSP also tends to be naturally testable, as Notifiers are the natural conduit for interaction
and interaction drives the behaviour.

(ii). Issues Related to BSP

The upper most concern for BSP is that it provides a perfect opportunity to create true
Notifier spaghetti. In fact, it is quite easy to gravitate to an entangled mass of Notifiers
over time. The countering process is to diagram the Models, the Notifiers together with
their inter-connections and so highlight areas of concern. If your BSP model is hard to
draw with many cross-over connections then it is a prime candidate for connection
refactoring.

There is also the post implementation redesign syndrome, where a completely functional
BSP model is written in code only to then diagram it and realize how silly and overly
complicated it really is. Iterative, on-going diagramming should be a natural part of your
design-implement-redesign cycle. Diagramming provides the operational high level view
of the system and working in Design-Space gives much more immediate insights at the
macro-scale than coding.

8. The Larger Design Picture.

Looking at the bigger scheme of things, it is important to appreciate that the BSP design
system is actually a limited application of Originware’s much wider “Design for Interaction”
technology, called:

“Reactive Fabric Design Methodology”

It provides a complete framework for iterative design and visualization. For more information,
please see the website link:

Reactive Fabric Technology from Originware

9. More Information.

Demonstration source is also available. This is a fully functional iPad Xcode project,
written in Swift 5.5 and SwiftUI 3. See the git repro:

The BSP Demo App@BitBucket

Address queries and comments to: Terry Stillone (terry@originware.com)

and see the Originware.com site for additional technologies.

https://www.originware.com/reactivefabric.html
https://originware@bitbucket.org/originware/bspdemoapp.git
mailto:terry@originware.com
https://originware.com
mailto:terry@originware.com
mailto:terry@originware.com
https://originware.com

Appendix I. What is Design for Interaction ?

To give you a wider perspective, there are many design principles around. The more
notable ones include:

• Design for function calls (e.g assembly, fortran etc).

• Design for objects (traditionally called “object oriented design”).
• Design for process (e.g. micro services).
• Design for domain (bounded contexts) and design for aspect.

Each design principle recognizes the boundaries and contours of particular aspects of
the system. Some of these principles are more mature and cover a number of separate
aspects but they tend to focus on a primary aspect. Design for Interaction recognizes
the Data aspect (represented as notifications), the Process, the Actors in the
interaction and the Interactional Topology, but does make interaction the foreground
focus.
The aspect of “Interactional topology” also touches on the manner of interaction
between Actors. The characteristics of interaction can be categorized into the following
aspect matrix:

Aspect Interactional Aspect

Single-way Bi-way

Temporal Aspect

Synchronous

Asynchronous

Synchronous single-way
push from the Producer
Actor to the Consumer
Actor

Synchronous bi-way. A
push from the Producer
Actor to the Consume Actor
followed by a synchronous
reply back to the request
(from Consumer back to
the Producer)

A single-way push from
the Producer Actor that is
received asynchronously
by the Consumer Actor.

Asynchronous Bi-way
Interaction. A push from the
Producer Actor to the
Consumer Actor followed
by an asynchronous reply
back in relation to the
request, from Consumer
back to the Producer.

Actors can be real (such as a user or a device), material (related to the host OS), they can
be purely abstract, representing abstract concepts (these are termed abstract-Actors) and
they can also represent aggregations of notifications from other resident Actors (referred to
as meta-Actors).

Interaction Topology also recognizes the connection patterns that an Actor employs:

•The Source pattern: The Actor is single-way producer to output with no input.

•The Collector pattern: The Actor is a single-way consumer of input with no output.

•The Operator pattern: The Actor is a single-way consumer of input and producer to output.

•The Service pattern: The Actor is a bi-way consumer of the input with no output.

•The Socket Source pattern: The Actor is a bi-way producer to output with no input.

•The Socket pattern: The Actor is both a bi-way consumer of input and bi-way producer to
output.

Appendix II. Why Use Design For Interaction ?

Humans naturally envision interactions, party because their foundational biology employs
interactions for operation (e.g. the nervous system with electrical impulses, chemical
signalling of metabolic control, etc) but more, humans have evolved to recognize and craft
interactions, especially between themselves and their world. So, basically, what the
“Design for Interaction” principle does, is to represent complex process into something
that humans naturally relate to. Contrast this with the “Design for function calls” principle
that is not a natural human process, that takes time to become literate in and even more
time to be able to compose. If you take a school child with an appropriate level of reading
comprehension and give them a (simple) interaction diagram, they will begin to grasp at a
basic level the basic features of the process, such as its implied sequencing.

As a methodology, Design for Interaction asks:

“What are the external incoming interactions ?”,

... and for each of those interactions, “What are the end targets they need to get to ?”.
These targets are normally material boundaries (such the Hosting OS Services or
Presentation services which are represented as material Actors). Then, intermediate
Actors between these sources and targets are synthesized using iterative design
analysis. Synthesis is performed by grouping the incoming interactions into behaviour-
cycles and ordering those cycles into scopes (and with scopes ideally forming a collective
hierarchy). The scopes define the behaviour scope stack elements and each stack
element becomes an Actor to handle the individual interactions for that scope.

This iterative design methodology as a process, can take on a quite amazing quality of
unfoldment, as it progresses and evolves from the grosser, basic foundational scopes, to
the more fine grained behavioural nuance that the richer behaviour Scopes imbue. This
evolve-to principle brings a more organic, more evolutional characteristic to the
construction process. It brings a more mature progression as opposed to the limited
dimensionality of the traditional “write code and integrate” standard cycle.

Behaviour
Representation
as Interactions

Vizualisation
of Design

Decomposition
of High Order Behaviour

Locality
of Behaviour
within Design

Incremental
Design Synthesis

Testable
Design

Use
of Notifiers

Categorization
of Behaviour

Organization
of Behaviour

Provides

Provides Through means of

Provides

Through means ofThrough means of

Through means of

Through means of

Collaboration
and Sharing of

Design

Through means of

Provides

Design Constructs

Design

BSP
Design

Capabilities

Appendix III. The BSP Model In More Detail

In terms of state persistence, there are guidelines as to what the Actors persist. The BSP
Service and Presentation Actors are oblivious to the behavioural state, only the Behaviour
Actor persists behavioural state. Of course the presentation system may give the
appearance of responding to behavioural state (such as, undo my last action) but this is a
result of presentation being driven by the Behaviour Model (which can adapt to its own
state).

As you work with BSP, you may find:

• The Behaviour Actor is the most complex Actor of the three models. The model requires
much more attention, much more support (e.g. a Behaviour Stack) and may require the
use of other sub-Actors.

• It is worth synthesizing internal Behaviour Actor meta-events which are an aggregation of
actual presentation and service events into the Behaviour Model so as to simplify and
localize in-behaviour-model handling as one complete grouping.

• The separation of Actor roles pulls in more interactions between the individual BSP Actors
as notifications may need to be cross routed to their target model, rather than being handled
locally in the source Actor. This is a trade-off to bring in consistency to the system and
which ultimately reduces the key concern of complexity.

Behaviour Model Service Model Presentation Model

Functional
Role

Encompasses the traditional
business logic.
In more abstract terms,
models the control and
coordination of the cycles and
activities of the application.

Engages and controls OS
services

Emits OS Service events.

Engages and controls the
traditional View Models
and View controllers.

Emits Presentation
events (e.g. button click
events).

Accepts
Request
Types

Does not accept external
requests.

Exercise Host OS services
(e.g. comms, data
services, location
services, speech services,
logging services).

Draws graphical
elements.
Push and Pop Navigation
Stack Element.

Observes
and Emits
Event
Types

Does not externally emit
events.

Authorisation events, OS
service failure events.
Hosting state changes.

Graphical element events
(e.g. mouse clicks, text
entry events).

Houses The Behaviour Stack, if
required.

OS control interface
instances.

View model instances
and graphical element
instances.
Navigational Stack and
elements.

Persists
State

The application state and
behaviour state.

Security and authorisation
state.

The view navigation state
and view model state.

The table below, details the aspects of the BSP Actors:

BSP Design for Stacked Navigational Systems.

Service (Model)

Behaviour (Model) Presentation (Model)

Notifiers:

• Sevice Request

• Sevice Event

Presentation StackBehaviour Stack

Stack Element (Item 1) Stack Element (Item 1)

Stack Element (Item 2)

Observe:
 Presentation events for a
Presentation Stack pop and
correspondingly pop this
behaviour stack element.

Stack Element (Item 2)

Notifiers

• Presentation Request

• Presentation Event

Notifiers

• Presentation Request

• Presentation Event

Issue
Event

Issue
Request

Issue
Request

Issue
Event

Issue
Request

Issue
Event

BSP Example: Modal Confirmation Sequence Diagram.

Service (Model) Behaviour (Model) Presentation (Model) User

Presentation
Request

Pop Modal
Stack Element

Push Modal
Stack Element

Push Modal
Behaviour Stack

Element

Pop Modal
Behaviour Stack

Element

UI

Presentation
Event

Determine Modal
to be employed

Supply Button Press
result from Pop()
returned value

Remove Modal
Graphic

Present Modal
Graphic

Modal Button
Press Modal
Button

(1)

(2)

(4) (5)

(6)(7)

(8)

(9)

(11)

(3)

(10)

(12)

BSP supports UI Navigation Stacks, below is an example notification diagram
supporting a behaviour stack.

To illustrate the interaction between a behaviour stack and presentation here is a sequence
diagram for pushing a modal confirmation dialog, to a stacked presentation model:

