
Author: Terry Stillone (terry@originware.com)

Web: www.originware.com

Version: 1.0

September 2018

SDK For iOS, OSX (and coming for Linux)

White paper

Draft

mailto:terry@originware.com
http://www.originware.com

Whatever your background, this white paper is addressed to you but, perhaps not all of its
content is relevant for you.
To support various reader technical levels, this document is structured to gradually progress from a
more generic, conceptual description of Reactive Fabric technology, to a more software
architectural stance and then finally engage in detail with code examples. So you may want to
begin reading and then fall off as the conversation loses relevance for your background.

Just before we start, I will formally define the domain of the technology:

Lets take a simple example, something we are all familiar with and treat it as a system design. Lets
treat the operation of the human body as a system and create a concept system design. As a
simple, high level mechanical system, the human body looks something like the diagram below.
The elements (head, arms, hands and legs) form the functional elements of the design. The green
forward arrows indicate direct control interaction in the form
of notifications (messages) between elements. The smaller
secondary blue (back directing) arrows indicate back reply
notifications resulting from previous forward notifications.

In our design, the head element notifies appendage
elements of direct muscle requests and in turn the head
receives back replies indicating muscle response (and
possibly appendage positional telemetry as well). Each
element has its own set of notification requests and the
elements being messaged must recognise those requests
and respond with appropriate replies. As this is an initial
concept design, the specific types of notifications are not
stated here. Only their role or messaging intent is given at
this design scope level.

This design follows a "Centralised Control Pattern" as the head controls everything and the
secondary appendage elements merely respond. In this case the notification traffic volume is high
as the forward and back replies perform a Feedback Pattern which only diminishes when the
appendage has reached its target position and stops.

 Reactive Fabric is a software technology that covers software engineering aspects of:
• The Software Design process, modelling software operation with processing Elements and Notifications.
• The visualisation of the Software Design through Element visual models in various levels of detail (LOD).

The Reactive Fabric process engages:
• Collaboration of the design process.
• Thought based prototyping in the Reactive Fabric Design Space with less emphasis on software prototyping.
• Sharing and Comprehension of the design models with all associated parties at the appropriate LOD.

The inclusive Reactive Fabric SDK written in the Swift language provides a direct mapping of design model
Elements and Notifications to software classes and manages the evaluation of client defined fabrics.

1. Introduct ion

 1. You, the Audience

 2. Reactive Fabric Technology in Conceptual Terms.

Given that initial system how about we perform a small redesign shifting away from a high
bandwidth notification design (using direct muscle control commands) to one using more high level
directive notifications which are also routable. The
notifications in this version indicate motion intent and the
target appendage.

In this modified version (to the right), the head issues requests
in the form of intent and addresses notifications to target
elements using the Nervous System element as a routing
pattern. The head for example may issue a raise left arm with
a target of the left arm. The notification will contain the "raise
arm" request with the target of "left arm" to the Nervous
System element which will look at the target entity at and pass
the notification to the Left Arm. The arm then manages its
motion and replies back with positional information when the
motion is complete. The notifications in this design merely
message high level control (intent) and so the general
notification bandwidth is markedly reduced.

In this design, routing notifications through the Nervous System gives us some advantages we
can make use of. First the nervous system is the activity gateway for both commands and replies.
So it is a natural access point for monitoring whole system activity. Additionally, we can use the
Nervous System element to inject notifications into the whole system so as to simulate activity.
With this, if we wanted to test the system we could inject the desired commands into the Nervous
System element and then monitor the direct response of the
appendages and what is passed onto the head.

In the previous body design, we were describing a "macro
system behaviour design model". We can also come up
with medium level designs. Here on the right is a simple
concept design for the adrenal glands. Notice this is a one
way messaging model as opposed to the previous bi-
directional model. Here the Adrenal glands message through
the blood stream pathway and messaging is performed by a
hormone molecule rather than an electrical impulse (as in the
previous model).

As this is a concept design, it has been presented as a standalone model where in reality the
glands are directed by the nervous system (element). That model relationship would be depicted
later, in more refined design iterations where the emphasis is more on detail rather than concept.
In the concept design we want to convey the architectural level of operation and not include too
much detail and not make assumptions on how it must function (leaving those decisions for the
subsequent functional design iterations).

We could also come up with micro-level designs for cell operation. Where in actual fact cell
operation is extremely complex, we don't need to put all that into our models. We only need to put
into our designs the operations that are relevant for the project and relevant for the current design
phase. So we only design for what is required.

 1. Reactive Fabric Technology.

1. Introduct ion

Reactive Fabric engages the whole team in the design process, from product management,
project management, software design, software development, testing, documentation all the way to
marketing. This engagement is made possible by making the design models and the design
process available to all and most importantly: available at their own level of engagement
through model LOD (Level Of Detail).

Lets look at some example design iteration scenarios:

• In the initial design meeting, everyone joins in to sketch out the concept design models. The
models naturally define functional boundaries, which translates to how teams are formed and
their individual team sizes. Those teams then individually over time work on their given
concept models to detail and mature for a first iteration model and they present those back in
a subsequent group meeting. Model feedback is given during the iteration design meeting
and design constraints are defined relevant for the time. An initial iteration 1 implementation
is constructed from the iteration 1 design model. The implementation is tested which then
feeds back into the iteration 2 group design meeting and so on.

• Product management and marketing comes in to look at macro design level models and give
input on additional high level features and capability. The software development team then
pushes back on some of those ideas by showing in model terms how much extra work those
features are to attain. Understanding that, product and marketing then modifies their ideas to
come up with suggestions that better trade off between work and feature benefit.

• Over time, models are expanded, matured and refined (together with their implementations).
If the group is following a classical developmental path, then towards the final iterations the
designs converge and change by smaller increments. Alternatively, the design process can
also bring up new possibilities which after collective assessment may be incorporated. The
point is that through collective envisioning of models and collective participation, more
opportunities are realised.

Through the model, participants have both a visual model and a vocabulary. Engaging them to
discuss, give insight, suggest, comprehend, explain and trade off.

Design models can be platform vertical as they can
cover from server level operation, through to large
application, to mobile app and SOC (embedded)
systems and platforms. Modelling brings project
design unification and various teams can reference
other team models to support their own.

To give a better idea of a practical design model, the
example to the right is a Rest Web-Server design.
The system serves HTML pages. HTTP requests
come through the Network element, which are
passed through a Network Session Tracker for
validation, then to the URL Router element to
perform routing to the appropriate content provider.
For page content, the Page Content Provider
generates the HTML page employing a Page
Template Service. The generated page is then
passed back through the same path to the Network
element for delivery.

1. Introduct ion (cont)

 2. Participation in the Reactive Fabric Design Process.

The "Notification" is an analogy of the electrical impulse, the chemical messenger or the network data
packet in the computer science domain. In abstract terms, it is a transportable data entity (a first class
object) which requires a transport path from one Element to another. It encapsulates the information
that is to be messaged between particular elements over time and as such, collectively constitutes a
data stream of data events (with their data payload) notifying the target Element.

As Source elements produce notifications, Collector elements
consume, Operator elements perform computations on notifications
by consuming and producing. Operators use their input notification
to calculate a corresponding output notification. Thus a system's
behaviour and state is described by notifications flowing through the
system in the same way that a physical organic system changes its
state as a response to stimuli which ultimately forms its whole
behaviour.

To flesh out the interaction of elements and notifications, lets look at a direct example. Say we have a
toy remote control vehicle and our Reactive Fabric app receives telemetry back from the remote toy.
The telemetry includes the toy's wheel rotation speed (in revolutions per sec) and front wheel direction
(in degrees). Our App is required to perform realtime analysis, to compute the path of the vehicle and
draw it on the device's screen. Our design describes the receiving telemetry as two source elements,
one for wheel rotational speed and one for wheel direction. We utilise an operator to perform a
convolution of the two source element notifications to calculate the incremental positional change (the
velocity vector) and then feed that into an integration operator to calculate the position of the toy. Here
is what the practical design looks like:

Going into more detail, when we are drawing the toy motion, we also want a smooth path on the
screen, so lets add smoothing capability to the Position Integrator operator. We also need to put
some text up on the screen to describe the speed of the toy, (i.e. stopped or in motion with a speed
level). So lets add an Annotator operator which takes the position from the Position Integrator and
analyses the position at various time increments to emit a resultant enumeration indicating either of: 1.
An indicator of the start of a new path (implying the previous path should be cleared), 2. An update to
the current toy position (when the position changes) relative to the start point or 3. The toy motion
speed (when in motion).
All the results of the Annotator then feeds into the element that becomes the presentation View
Model which draws the toys path on the screen together with the speed indication text.

Side note: The diagram above
depicting notifications as balls on a
timeline has a formal name of:

"Marble Diagrams"

For a complete set of Reactive
Extension marble diagrams, see:

http://rxmarbles.com/

This is typified diagrammatically
here with a source emitting a
sequence of notifications to a
collector over time. These
notifications include both control
events (in brown) and item
events (in green with integer
data payloads).

2.React ive Fabr ic Architecture

 1. The Concept Of The "Notification"

http://rxmarbles.com/

Reactive Fabric abstracts common Element roles into a set of Reactive Fabric Patterns. These
patterns describe the elements general processing role. These role variations are also intrinsically
reflected in variations of their notification pathway topology (i.e. whether they have inputs, outputs,
replies, etc). So the list below sites the patterns role together with their topology variance.

These patterns also form the base vocabulary for verbally describing and for the discussion of
models. (e.g.: "The text-input Source feeds into the app-logic Subsystem which turn passes data
requests to the HTTP Service")

(Legend: Green arrows identify notification pathways and blue arrows denote back reply paths)

Within a typical system design, particular elements by virtue of their placement within the topology
of the Fabric will form particular roles. For example, fabric boundary elements will end up inputing
or outputting information. So inputs will be Sources and outputs tend to be Collectors. Internally,
simple processing elements are typically Operators while complex processing will tend to be
organised into SubSystems. Shared facilities within the Fabric will tend to be Service elements.
Complex pipelines such as network protocol stacks will normally be designed as a sequentially
composed Sockets.

The Source
Pattern

Soley generates Rf.Notifications (i.e. does not receive
notifications).

The Operator
Pattern

Operates on input Rf.Notifications to derive output
Rf.Notifications.

The Service
Pattern

Provides a notification Service, accepting request
notifications and replying back via callback closures (these
closures are defined in the original request). The callback
is denoted in the diagram as a blue back notification arrow.

The Socket
Pattern

A hybrid of the Service and Producer patterns. Sockets
accept notification requests, similar to the Service Pattern
but also generates notifications.

The
SubSystem

Pattern

A SubSystem manages a sub-collective of Elements.
SubSystem Rf.Notification inputs and outputs are made
available to the sub-collective for processing as the
SubSystem element in itself does no processing other than
routing input and outputs.

The Collector
Pattern

Collects Rf.Notification and makes them available for
consumption.

Pattern Description Topology

2.React ive Fabr ic Architecture (cont)

 1. Reactive Fabric Patterns

Reactive Fabric also supports the capability of Element Scoping. Element-Scoping is required
when the whole system operates in a number of separate modes or states and the element
processing must handle and process in relation to those modes. This means that Element logic
may be different for individual scopes, it may also mean that the elements accept or emit varying
notification data-types depending on the current scope.
Protocol Stacks are a good application match for scoping where the elements are required to
function under various network protocol operational phases. A bluetooth protocol for example has
phases which include:

• Adaptor Initialisation phase: (with actions: open/close adapter),
• (Peripheral) Discovery phase: (discover peripherals)
• (Peripheral) Connection phase: (connect/disconnect to peripheral, discover peripherals services)
• (Peripheral) Transaction phase: (read data, write data)

If we map each bluetooth layer to a processing element (Socket) where each is scoped for these
modes, the design looks something like:

In more depth: the Network Provider Element provides the Network Service to the whole system.
It accepts requests such as Open Adapter, Discover Peripherals, Connect to Peripheral, Get/Put
data, etc depending on the current scope. Those issued commands are propagated through the
protocol element pipeline (representing the various protocol layers) and when a reply to a
command is generated (normally at the Network Interface element) it is propagated back to the
Network Provider and then back to the issuing client.

Each element, performs a distinct role in the protocol stack and each operates in relation to their
current scope. So in the Adapter scope level case, the command is merely passed through to an
element that can perform the action (that is the final Network Interface element). The Network
Interface element acts a device driver (interfacing to the OS), performing the adapter opening or
closing (through the given OS interface) and then returns a result as a reply which is back
propagated.
A more general applicable example of scoping is to manage Application modes where the
application must bootstrap various levels of operation before performing actual application logic. A
typical app will have applicable modes of: App Initialisation, Security Handling, OS Service
initialisation, Presentation System Initialisation and the execution of the Application logic.

2.React ive Fabr ic Architecture (cont)

 2. Element Scoping

Reactive Fabric supports a concurrency model similar to Apples' Grand Central Dispatch.
Evaluation is performed by and run within what is termed an "Evaluation Queue". An Evaluation
Queue accepts a closure (to be executed) and runs the closure if the dedicated queue thread is
available, (running it in that thread), otherwise it queues the execution request for when thread
availability is reestablished. The Evaluation Queue is an enhanced version of the Apple
Dispatch Queue, enhanced in that it contains special anti-deadlocking support.
In support of synchronisation, each Fabric instance is assigned a serial Evaluation Queue and
then its evaluation (and inner notifications) are performed in the dedicated (serial) evaluation
queue. This ensures fabric operations are properly ordered and fully synchronised. The
Evaluation Queue scheme places threading issues very much in the background and for the
developer it only requires attention under special circumstances such as joining fabrics or
offloading intensive operations.

Element co-operations such as timer actions are run in their own timer queue but the results are
handed over to the target element in the fabric Evaluation Queue to guarantee fabric
synchronisation.

If the fabric has heavy processing operations to the point execution off loading is required,
additional Evaluation Queues can be created and used.

Fabric evaluation can be performed in a number of executional modalities to suit the concurrency
requirements of the evaluation. These modes are:

• Asynchronous, running in the fabric EvalQueue with the caller not being blocked.
• Synchronous, running in the fabric EvalQueue with the caller blocked until evaluation

completion.
• Inline, where the calling Evaluation Queue (or native Dispatch Queue) is used to perform

the evaluation. The caller is blocked in the sense it is used for evaluation. This modes is
designed to reduce thread overhead.

The Fabric has the capability to deploy resources to its encompassing elements to coordinate
collective evaluation. This resource dissemination is carried out before the initiation of evaluation
through a series of Fabric notifications. Once deployed, these resources can be utilised during
evaluation. Schedulers for example can be disseminated to elements for use by element timers.
These schedulers support a virtual time stream that counters problems that may arise from
system timer coalescing.
[Background on timer coalescing : Modern systems employ timer coalescing to perturb system
timer events so as to align and reduce system energy demands. This severely impacts on timer
ordering in a complex system as no longer does a timer trigger strictly correspond to the system
clock and various sub-systems can no longer agree on ordered timed events].
The Reactive Fabric virtual time schedulers ensure their time values are in order and are
comparable across separate elements and fabrics. Notifications can be optionally timestamped
with their associated virtual time so that element processing has a time reference.

2.React ive Fabr ic Architecture (cont)

 5. Scheduling Internal Element Operations: The Scheduler Tick Service.

 4. Modes of Fabric Evaluation.

 3. Synchronisation and Evaluation Ordering.

In traditional design, Elements have their logic hardwired in their element handling code. This static
design works for non-adaptive requirements but what about scenarios where evaluation must adapt
for situational changes? If the case demands that fabric topology remains invariant to situational
changes, but the individual element behaviour must change, then why not get the element behaviour
to adapt or preconfigure to the situation? By using Fabric events (raised before evaluation initiates)
configuration and customised behaviour can be passed from the fabric to the element and then
executed in the evaluation cycle.
To demonstrate this injection mechanism, imagine a product cost-pricing scenario, with invoices being
supplied by a Socket and a fabric expression which costs the chargeable(s) given in the invoice. The
situational variation here is that costing varies by regional location (which conveys to variations in local
tax rates, local tax laws and possibly even differences in the currency unit).
Given first is a static design, where invoices given to the Invoicing Socket are broken into
chargeable(s), then passed to a Charging Socket which in turn are passed to a Chargeable Costing
Socket which then confers with the Product Costing Service and a Local Rule Service in order to
arrive at a location based product cost.

Lets modify that design to get the Fabric to inject the specific costing behaviour, crafted and optimised
for the locational variations to the Chargeable Costing Socket. In this adapted design, the fabric
obtains the specific costing behaviour before evaluation initiates and passes it to the "Chargeable
Costing Service for Location" element for later execution.

This design reflects a more simpler, naturally flowing topology, with no ongoing overhead in
continually having to reference location context in order to arrive at a location based cost.

2.React ive Fabr ic Architecture (cont)

 6. Adaptive Behaviour: Element Behaviour Injection and Adaption.

The Reactive Fabric Design Process encourages all respective parties to engage, work and
collaborate in the "Design Space". The project concepts and vocabulary are conceived and
matured in this space. The same way Relativistic physics uses the "Thought Experiment" to
ponder scenarios and their effects, the Design Space provides the canvas on which to play out
scenarios and their effects on the whole system. In the Design Space functional capabilities
are explored, dependencies are nutted out and given given appropriate residence (within the
design), similarities in behaviour become visible and opportunities for optimisation are made
more visible. The impact of notification bandwidth on particular heavy pathways is also
considered and solutions explored.
The Design Space takes more of the collective group energy and in doing so, reduces the
energy spent on prototyping, implementation and verification (testing). Whereas in traditional
design methods, implementation and testing outweigh design, in Reactive Fabric Design they
equally balance. The time invested in Implementation and testing is reduced, and they become
more of a methodical and sizeable exercise.
Of course this is a generalisation and does not extend to every single software domain. Some
special purpose software projects will always require more effort in prototyping and
implementation than design, especially if they are chiefly constrained by system resources
(CPU, memory, graphics bandwidth etc). The point is that: the Reactive Fabric Design
Process primarily addresses behaviour complexity. If complexity management is not a core
issue, then the benefits are questionable.
The Design Space provides opportunity to explore dynamic designs which adapt and morph to
handle situational changes. Morphing here can refer to the use of different technologies (e.g.
different network technologies to supply connectivity). Morphing can also refer to failure
handling and graceful degradation. The Design Space widens the design palette to encompass
more "what ifs" and to collaborate on what ifs.
The Design Space also brings much more reassurance (and orientation) to the group as it
allows the group to know what it is standing on. If the design isn't addressing a feature or
behaviour, then the software isn't either. The implementation mirrors the design and the design
mirrors the implementation.

Each software development era has come up with constructs for describing their basic software
unit. The developers that embrace those constructs then become accustomed to visualising
and vocalising their implementations (and possibly design) in terms of those units. Some of
these major software eras and their constructs are given here below:

Era Implementation Unit

Opcode Programming The instruction (binary or assembly).

High Level Language The statement and function.

Object Oriented Programming The class object with methods and members.

Patterns

Reactive Extensions Sources, Observers and Observables.

Reactive Fabric. The Element and associated patterns.

Microprocesses

Design Unit

UML

The Pattern

The Observer and Observable.

The Element and associated patterns.

The Microprocess

3.React ive Fabr ic Design Process Benefits

 1. Benefits From The Methodology.

 2. Categorisation of Implementation and Design Units.

Some of these eras were implementation centric while some follow-ons were design centric. It
wasn't until the OOP era that some type of implementation model was backed with a visual/
design model (and that was UML). UML was the epoch point for a visualisation model but UML
had its limitations and ended up being too heavyweight, too complex and too detailed.

As the complier abstracted the opcode-instruction into the statement/function,
Reactive Fabric abstracts the "Class" into the "Element".

For the developers, the units in which they visualise with are:
• The Element (representing the processing of the system).
• The Pathways between elements (representing the relationships, dependencies, etc).

• The Data Type of notifications following the pathways (the type of data in the system).

For the designers the terms that they work with are:

• Topological roles of elements:

• System boundary elements as opposed to internal elements.

• Control Elements as opposed to data processing Elements

• The hierarchy of Elements: the sub-systems within the system.

• The flow of data through the system

• The element dependencies as traced by notification pathways

For the architects the terms that they work with are:
• Topological Complexity.
• System Adaption.
• System Response (Notification bandwidth handling).
• Testability and Simulation-capability.

One of the major benefits of Reactive Fabric is that it attempts to be both an implementation
and design model with each mirroring the other. In doing so, it brings a level of consistency that
simplifies the work load required to conceive, design and implement.

Visualisation brings in a new dimension to collaborative prospects. Collaboration not only
among software-technical staff but also across graphic designers, product management,
marketing and all stakeholders.

Model sharing both horizontal (across projects) and vertical (across platforms) provides a new
level of cross-coordination, integration and unification.

3.React ive Fabr ic Design Process Benefits (cont)

 3. Categorisation of Implementation and Design Units (cont).

 4. Benefits of Model Visualisation.

The Reactive Fabric SDK has application across a broad range of platforms:
• SOC (embedded) controllers.
• App software.
• Large applications.
• Large system software.
• Server software.

Example product bases include:
• multifunction apps and apps with multi-off-network dependencies.
• IOT devices.
• medical apps and medical devices.
• in-car multifunction devices.
• robotics control, toys, RC toys.
• audio devices and audio apps.

Example software components:

Service (provides servicing for):
• Network management such as HTTP (REST) control.
• Data services (data correlation, aggregation and formatting).
• Local hardware device servicing (data gathering, monitoring).

Operator (provides controlling of):
• View models (abstract and decouple data models from drawing/graphic models).
• Hardware devices (controlling programmable devices).

Socketing (provides processing for):
• Complex network interaction.
• Protocol stack processing.
• Remote peer network interaction.
• Multi-Path/Multi-Network technology handover.

Scoped Operators (manages):
• Application management (example scope levels: handling application levels of

initialisation, security, integrity checking, presentation initialisation and business logic
execution)

Producers (generate):
• Test and simulation data generation.
• Timing events and timing control generation.

 1. Domains of Application of Reactive Fabric Technology and SDK.

4.Appl icat ions of React ive Fabr ic

Reactive Fabric stands upon a platform of seminal principles in the same way that the automobile
stands upon the wheel. The concept of the wheel was an epoch event but on its own it didn't have full
application to propel humanity. The automobile, as a fusion of ancillary concepts brought about
personal locamotion to a level far beyond what each individual technology-facet could provide.
Reactive Fabric, stands as a confluence of the software technologies of: Reactive Extensions,
Micro-Processes, Functional Programming and the more distant work of the Haskell Language,
Software Patterns, Sequential composition, UML design and the concept of event streams. It fuses
them into a software design and development approach that extends far beyond their individual scopes.
With respect to these given software technologies:

• The Haskell language provided the abstraction where you don't merely define behaviour in the
structural domain, but also define it in the temporal realm, making the executional provisioning and
behaviour separate from when it is defined. So rather than writing a function to do something, we define
a function which will construct a function to do that something. This supports resource allocation at the
time it is required and the customisation of the target behaviour. Haskell also provided the concept of
functional composition (which also goes by other names of sequential composition and fluent
programming style) and functor mapping (where function behaviour is transformed through mapping
functions).

• Reactive Extensions coming later, drew upon Haskell concepts while melding with the ideas of
the event stream and the Observe/Observable Pattern to be what we know it is today. Reactive
Extensions was another software epoch, but it was developed as a strict library of Observables and
Observers (take, skip, interval, zip, etc). As a bulky library it was never abstracted and condensed to a
concise set of extendable principles. It was scoped as an implementation tool and as such does not
engage in the design process. It does not intrinsically share its internal process with the developer and
this separates the developer from the appreciation (and engagement with) the process that the library
performs.

• Micro-Processes: where as Reactive Extensions provides a well defined concept framework and
code interface, the Micro-Process concept has been too abstract, without sufficient support to define
how messaging is performed and with no patterning or classification of the different roles and
arrangements of the individual micro processes. It was an innovative concept, but lacking
implementation and design backing and support.

• UML Design was a blueprint tool, more of a representation of the implementation rather than a
description of the design. It was too low level and coupled too tightly to the target (object) language. It
did not cater for levels of detail and as such, quickly became unwieldy. Its target audience was limited
to software specialists.

Reactive Fabric extends the these software technologies with:
a simple and extendable modellable primitive:

The Reactive Fabric Element

• The primitive supports a Pattern scheme to describe the various roles of Elements.
• It provides a Visualisation methodology to design in solo or through collaboration.
• Encourages dissemination of models at various Levels Of Detail to target all interested parties.
• Includes a concise SDK which allows developers to easily construct and operate their own Elements

(supported by large example library set).
• Unifies design across platforms.
• Scales from small to large applications and platforms.

5. React ive Fabr ic Origins, History and Comparisons

 1. History of the Reactive Fabric Concept.

Note: the various code samples given in this section are authored in the Swift 4.2 language.

The Reactive Fabric SDK organises its classes into a namespace hierarchy with the base of "Rf".
Abstract interfaces reside under "Rf", for example the Source interface class is denoted by
Rf.ASource<OutItem>, the Operator as Rf.AOperator<InItem, OutItem> and so forth for the various
patterns.

Element behaviour is defined by how notifications are handled when received. The SDK thus defines a
two primitive methods, one that handles receipt of an item notification and another that handles control
notifications. Both also take a Rf.VTime parameter to denote the timestamp of the notification:

The InItem generic type denotes the data-type of the received item notification. These are performant
interfaces intended to streamline the code that handles item notifications, as they are the predominant
notification type.
For the purposes of brevity, there is also a convenience interface method that handles both item and
control notifications together in one method:

Here, the notification parameter encapsulates the item and vTime stamp, outputNotifier uses the same
primitive interfaces to emit notifications and requestNotifier notifies requests for evaluation termination.
Note: the code samples given later use the compact form for brevity and code clarity at the expense of
performance.

To emit an item of type InItem and vTime timestamp we write:

To terminate evaluation (with error: error at timestamp vTime) we use:

The take operator is one of the simplest operators, it merely propagates a number of received item
notifications through to the down-stream element. This count value given as a count parameter of the
take operator method.
In procedural terms, the operator must handle item notifications: emitting using the outputNotifier (i.e.
passes through down-stream) count item notifications and then raising an end of evaluation when the
count is reached (by invoking requestNotifier.requestEvalEnd). It must handle control notifications:
begin evaluation (control enum: .eBeginEval) and end evaluation (.eEndEval). The element is also
responsible for propagating control notifications onto the down-stream element.
Take must additionally handle a special side case where the count is zero. The element should
terminate immediately on receiving an evaluation begin.

public func notify(item: InItem, vTime: Rf.VTime?) // Item notify method

public func notify(control: IRfControl, vTime: Rf.VTime?) // Control notify method

 func onNotify(
 notification : Rf.eNotification<InItem>,
 outputNotifier: Rf.ANotifier<OutItem>,

outputNotifier.notify(item: item, vTime: vTime)

requestNotifier.requestEvalEnd(error, vTime: vTime)

Technical Appendix 1. Code Examples

 1. Introduction to Code Samples

 2. A Simple Operator Example: The take Operator.

The above static take function defines the behaviour of the take operator. A small amount of
additional boiler plate code is required to express it as an Element instance method (in the
Rf.Elements.AElement class) and to enable it to be composable with other Elements. Here is
the take boilerplate code extending the Rf.Elements.AElement class:

extension Rf.Elements.AElement
{
 public func take(_ count: UInt) -> Rf.AOperator<OutItem, OutItem>
 {
 // Instantiate take operator.
 let takeOperator : Rf.AOperator<OutItem, OutItem> = Rf.Operators.take(count)

 // Compose Take operator with the self operator.
 compose(withElement: takeOperator)

 // Return the take operator for composure with subsequent operators.
 return takeOperator
 }
}

extension Rf.Operators
{
 public static func take<Item>(_ count: UInt) -> Rf.AOperator<Item, Item>
 {
 typealias eEvalNotify = Rf.EvalScope.eNotify

 let traceID = Rf.TraceID("take")
 let takeOperator : Rf.AOperator<Item, Item> = Rf.Operators.onNotify(traceID, { (inputNotification, handler) in

 switch inputNotification
 {
 case .eEvalControl(.eEvalBegin(let evalType), (let vTime)): // On a begin evaluation Control notification.

 // Propagate the Eval Begin event.
 handler.outputNotifier.notify(control: eEvalNotify.eEvalBegin(evalType), vTime: vTime)

 if count == 0
 {
 // Immediately request evaluation end.
 handler.requestNotifier.requestEvalEnd(vTime: vTime)
 }

 case .eItem(let (index, item, vTime)): // On an Item notification.

 let count1 = Int(count - 1)

 switch index
 {
 // Propagate the item.
 case 0..<count1: handler.outputNotifier.notify(item: item, vTime: vTime)

 // Propagate the item and then request evaluation end.
 case count1: handler.outputNotifier.notify(item: item, vTime: vTime)
 handler.requestNotifier.requestEvalEnd(tag: traceID.description, vTime: vTime)

 // End of evaluation with an error.
 default: RfSDK.assertionFailure("\(traceID.description): Unexpected index.")
 handler.requestNotifier.requestEvalEnd(Rf.eError("take: Unexpected index."), vTime: vTime)
 }

 case .eEvalControl(let (evalEvent, vTime)): // On any other control notification.

 // Propagate the event.
 handler.outputNotifier.notify(control: evalEvent, vTime: vTime)

 case .eFabricTool: // On a tool availability event.

 // No tools required.
 break
 }
 })

Technical Appendix 1. Code Examples (cont)

 2. Simple Operator Example: The take Operator (Cont).

The throttle operator is defined to propagate item notifications at a given rate as specified by the
duration parameter. A fabric scheduler is used to control the temporal window that disallows
item notification propagation. The scheduler is actually disseminated by the fabric before
evaluation and passed through to the operator in the .eFabricTool control notification.

public static func throttle<Item>(_ duration : TimeInterval, settings : Rf.SchedulerSettings) -> Rf.AOperator<Item, Item>
{
 typealias eEvalNotify = Rf.EvalScope.eNotify

 let traceID = Rf.TraceID("throttle")
 var scheduleTool : Rf.Tools.Schedule? = nil // The fabric scheduler.
 var allowItemsToPass = true // Indicator of whether to pass item notifications.

 // Use the onNotify operator to service input notifications.
 let throttleOperator : Rf.AOperator<Item, Item> = Rf.Operators.onNotify(traceID, { (inputNotification, handler) in

 switch inputNotification
 {
 case .eFabricTool(let (name, tools)):

 if name == "scheduler", let tool = tools.getScheduleTool(traceID)
 {
 scheduleTool = tool
 }

 case .eEvalControl(.eEvalBegin(let evalType), (let vTime)): // On a begin evaluation Control notification.

 guard let scheduleTool = scheduleTool, let evalQueue = evalType.evalQueue else
 {
 RfSDK.assertionFailure("\(traceID): No scheduler or evalQueue available")
 return
 }

 allowItemsToPass = true

 // Subscribe to the scheduleTool.
 scheduleTool.evalQueue = evalQueue
 scheduleTool.subscribe(settings: settings)

 // Propagate the Eval Begin event.
 handler.outputNotifier.notify(control: eEvalNotify.eEvalBegin(evalType), vTime: vTime)

 case .eItem(let (_, item, vTime)): // On an Item notification.

 // Selectively propagate item notifications given by allowItemsToPass.
 if allowItemsToPass
 {
 allowItemsToPass = false

 // Schedule a throttle time window, depending on the type of time reference we have for the current time.
 if let vTime = vTime
 {
 // A virtual time reference is available, use it to schedule the next processing event.
 scheduleTool!.schedule(atVTime: duration + vTime, action: { (time) in

 allowItemsToPass = true
 })
 }
 else
 {
 // Use a real time reference instead to schedule the next processing event.
 scheduleTool!.schedule(atTime: Date(timeIntervalSinceNow: duration), action: { (time) in

 allowItemsToPass = true
 })
 }

 handler.outputNotifier.notify(item: item, vTime: vTime)
 }

 case .eEvalControl(let (evalEvent, vTime)): // On any other control notification.

 if let scheduleTool = scheduleTool
 {
 // Unsubscribe from the scheduleTool.
 scheduleTool.unsubscribe(vTime: vTime)
 }

 // Propagate the event.
 handler.outputNotifier.notify(control: evalEvent, vTime: vTime)
 }
 })

 return throttleOperator
}

Technical Appendix 1. Code Examples (cont)

 2. Temporal Operator Example: The throttle Operator.

Notifications can be very generally classified into the use categories of Control or Data. Here
Control notifications tend to be high level, low bandwidth directives while pure Data notifications
tend to be primitive item-data information with a higher bandwidth level than Control varieties.
Data notifications can become problematic when emitting notifications that exceed the systems
thread processing capacity. First-reaction measures may entail throw-away or buffering techniques
which may not be appropriate. There are a variety of alternate mechanisms for handling these
scenarios:

• Employing a Feedback System between Source and Target Elements: This entails
engineering the notification pathway to be bi-directional with reply-callbacks between Elements
that provide a throttle directive leading back to the source. More simply, the target Element
back replies with a throttle directive to the Source and the Source then determines the best
strategy. In the case where the Source is not local (i.e. remote through a network connection),
then bidirectional back pathway must traverse the network interface back to the remote
source. This is exemplified in the following design.

• Pre-process and batch individual notifications: at the source, batch items into a larger
collective payload and notify less often with a larger payload. This works well for Audio data
sources, the notification payload becomes a packet of audio samples.

• Use Data Notifiers to supply a direct Data pathway between source and target rather
than having the data notifications traverse through a series of operators: Change the
source notifications to become more high level directives rather than low-level data and
engineer those directives to supply a direct data stream pathway (such as a Rf.Notifier).
When the target Element receives the directive with the embedded data stream, the target
then engages the stream and consumes the data. This scheme works well for streaming small
amounts of data such as GPS (position), mouse (position), monitoring etc.

 • Dynamically dispatch notifications along separate processing pathways: This is an on
demand Routing mechanism. The head element switches notifications through separate
processing pathways each with its own dedicated Rf.Eval.Queue (each with a dedicated
thread). Additionally, alternate processing pathways may also use specialised resources such
as GPU processing to increase processing bandwidth.

Technical Appendix 2. Solut ions to General Issues

 1. Notification Bandwidth Management: Scenarios Of Overactive Sources.

Reactive Fabric supports re-routing of data to handle scenarios such as:
• General switching of data for data capture, logging, analysis and monitoring.

• Switching inputs between real live data, test data, simulation data and generated data.

• Switching outputs between real live outputs, capture stores (in-order to capture realtime data
for simulation or auditing) and output test/analysis pathways.

In order to safely perform data switching, coordination is required between the various switching
points to ensure no data is lost. One method of coordination is to break the data up into data-
sessions (which occur sequentially over time). In these notification pathways, rather that just
messaging data items, they enforce a simple session-based protocol. This protocol employs
directives of: begin session, session-data transfer and end session.
These directives can be represented as an item enum:

• eBeginDataSession (a data session is about to begin and so data items will follow)
• eData(Item) (a proper data notification within the data session, of data type: Item)
• eEndDataSession (the data session has ended and another data session may follow)

the enum for the corresponding request replies are:

• eRequestBeginDataSession (upstream request to begin a new data session)

• eRequestEndDataSession (upstream request to end the current data session)

The design model for this is:
Operation: Element 2 (the downstream element) can
request the start or end of a data session sourcing
from Element 1. Element 1 complies by sequencing
its notifications so as to only emit data notifications
during an active data session. Element 1 may either
back request its own sources to start and end as well
or it can buffer the incoming notifications.

The full data switching design now becomes:

Here the Switch Control element controls the
Routing Switch element to determine
what input notification pathways (Input1,
Input2) are routed to which outputs
(Output1, Output2)

More specifically, the Switch Control
issues commands to begin and end the
Routing Switch data sessions. During
Routing Switch non-activity the Switch
Control commands the reconfiguration of
the internal pathways of the Routing
Switch (and then re-enables the
session).

Technical Appendix 2. Solut ions to General Issues (cont)

 2. Data Switching and Routing Strategies.

