
Classification of Thread Based Async Models

The Registered Callback or Delegate Model

The Threads with Data Sharing Model

The Async Expression Model

NSNotification based services such as Location/Orientation

Delegates

The Threaded WorkQueue Model

Separate threads with shared data employing locking
and signal events for notification.

GCD Dispatch Queues

NSOperation

Reactive Extensions

Threading Model Model Examples

RxPatterns

Asyn
c

Clas
sific

ation

Comparison Of Async Models (out of 10, higher is better)

Registered
Callback

Threads with
Data Sharing

Async
Expression

Threaded
WorkQueue

Asyn
c

Clas
sific

ation

Multiple Consumers

Operators

Synchronisation

Custom Producers

Custom Consumers

9/10

0/10

Error Handling

Completion Handling

2/10

2/10

2/10

2/10

10/10

2/10

0/10

1/10

1/10

2/10

2/10

9/10

2/10

0/10

1/10

1/10

10/10

2/10

10/10

10/10

10/10

10/10

10/10

10/10

10/10

10/10

Operational Simplicity 10/10 4/10 5/10 2/10

Ease of Tool-up 10/10 8/10 910 1/10

Capability Ease of Use

A

The Remote Procedure Call Model

The CoProcess with Messaging Model Darwin processes with Mach ports

Map Reduce Model

Soap and various RCP mechinsms

Hadroop

Asyn
c

Clas
sific

ation Process/Distributed Async Models

Process Async Model Model Examples

Process/System Async Models are Different to Thread Models

Thread models share the same memory space, others do not.

Process/System models require data to be serialised across boundaries.

Variable capture is available to threaded async models only.

Notification

Consumer

Producer

Operator

Subscription

Notifier

Data Item Notification

Error Notification

Completion Notification

Transport Entities

Control

Execution and Synchronisation EvalQueue

Concept Type Concept Sub Feature

Terminology For Classifying Async Models
Asyn

c

Clas
sific

ation

The Notification Concept Represents a notification of an event

There are different types of events:

Data Associated with the Event

The event may be a notification of an error

The event may be a notification of the
completion of events.

Events are produced and consumed

Events may be operated on.

Notification Examples NSNotification

A data parameter of an event callback handler

Touch Events

Asyn
c

Clas
sific

ation
The Notification Concept

A

Basically receives Notifications and emits Notifications.

Lambda operators such as zip.

take(count: UInt) - emit count item notifications.

Depending on behaviour may do something with received notifications.

Operators may operate on notifications by emitting a different
notification to the one received.

Operators are composable with other operators.

Operators participate in subscription,

Asyn
c

Clas
sific

ation The Notification Operator Concept

The Operator Concept

Operator Examples

skip(count: UInt) - skip the first count item notifications and emit the
remaining item notifications.

map(mapFunc: (ItemType) -> ItemType?) - map item notifications.

A

Co
nce

pt

Consume Notifications.

A Notifier that notifies targets by means of delegate functions. that can be set.

A Notifier that notices a collection of consumers.

Notifiers are not formal operators as they are not composable.

Not directly concerned with subscription.

They are a light-weight means of doing something with a notification.

Asyn
c

Clas
sific

ation The Notifier Concept

The Notifier Concept

Notifier Roles Examples

They typically forward notifications to some target(s) (i.e. perform the act of notifying)

A Notifier that queues notifications and then forwards them to targets when the
targets are ready to receive (Performs a buffering action).

They are the work horse of the action of notifying.

A

The concept is akin to a dispatch queue in that it has its own work thread(s)

The OSX/iOS dispatch queues.

Provides synchronisation for operations running in the same evalqueue.

Obviates the need for locking (simplifies code and performs faster)

The role is to perform Sync and Async tasks that are submitted to the
EvalQueue for execution.

Provides a predictable execution environment that can be
optimised and safeguarded against thread dead-lock.

Asy
nc

Clas
sific

atio
n The Evaluation Queue (EvalQueue) Concept

The EvalQueue Concept

EvalQueue Examples

A

Producer Thread

Registered Callback Delegate Design

Notification passed to
Consumer as argument.

Notification Producer
Executes callback

Execute:
callback(notification)

Typically Callback handlers are registered with Producers

Notifications may pass error conditions or termination as well as data

Typically Callback handlers are unregistered

Push Notification Design.

Call Sequence:

 Consumer thread calls: producer.register(callback)

 Producer thread calls: callback(producer.notification)

 Consumer thread calls: producer.unregister(callback)

Mapping

Producer = code executing callback

Consumer = callback

Notification = callback argument

Subscription = register callback

There may be a separate completion callback.

M
od

el
C

om
po

ne
nt

 M
ap

pi
ng

N
ot

es

Asyn
c

Clas
sific

ation

A

Threaded Work Queue Design

No operators and decomposition of processing

Generic Mapping

Producer = queues dispatch requests

Consumer = dequeues requests and handles them

Notification = dispatch request

Subscription = set request handler

Eval Queue = dispatch queue

Queue Work Thread

Notification Producer
generates dispatch

requests at appropriate
times.

Notification Queue stores
dispatch events

Queue
Request

Producers and hidden or are not simple to implement

Notification data is harder to access (not really designed into the model)

Notification Consumer
dequeues requests and

handles them

GCD Dispatch Queue Mapping

Producer = dispatch source

Consumer = dispatch handler

Notification = dispatch context or none

Subscription = set dispatch handler

Eval Queue = dispatch queue

Dequeue
Request

M
od

el
C

om
po

ne
nt

 M
ap

pi
ng

N
ot

es

Async

Classification

A

EvalQueue Thread

The Async Expression Design

Operator
<PType,
OType>

Producer
<PType>

Notification
<PType>M

od
el Operator

<OType,
CType>

Consumer
<CType>

Notification
<OType>

Notification
<CType>

No
te

s

The generic type above represents the notification item data type.

Reactive Extensions Mapping

Producer = Source

Consumer = Observer or delegates

Notification = Data, Error or Completed Events

Eval Queue = None, evaluated in subscription
thread or scheduled thread.Co

m
po

ne
nt

 M
ap

pi
ng

RxPatterns Mapping

Producer = RxSource

Consumer = RxObserver, RxNotifier or delegates

Notification = Data or Completed (with optional error)
Events

Eval Queue = Every expression runs in it own serial
dispatch queue thread.

Operator = RxNotifier<InType> -> RxNotifier<OutType>

RxP
atter

ns

